33° Congresso Nazionale della Società Italiana di Farmacologia Cagliari, 6-9 Giugno 2007

THERAPEUTICAL IMPLICATIONS OF INTRAMEMBRANE RECEPTOR/RECEPTOR INTERACTIONS AMONG DOPAMINE RECEPTORS

Maggio Roberto*, Francesca Novi[#] and Giovanni U. Corsini[#]

*Department of Experimental Medicine, University of L'Aquila; *Department of Neuroscience, University of Pisa

Over the last decade, numerous studies have demonstrated that G-protein coupled receptors (GPCRs) can form homo- and heterodimers. Their significance for drug discovery and characterisation is exemplified by findings that receptor heterodimerization can markedly change drug affinities and efficacies in a ligand-dependent fashion (Angers et al, 2002; Agnati et al, 2003; Maggio et al, 2005). Dopaminergic receptors have attracted particular interest inasmuch as heterodimerization has been shown for members of both the D₁/D₅ and D₂/D₃/D₄ receptor families which couple positively and negatively, respectively, to adenylyl cyclase (AC). Thus, heterodimers can be formed by: adenosine A₁ and D₁ receptors, adenosine A₂ and D₂ or D₃ receptors and somatostatin SST₅ and D₂ receptors. In addition, amongst dopaminergic receptors themselves, D₁ and D₂ heterodimers D₁ and D₃ heterodimers and D₂ and D₃ heterodimers have all been described. The existence of D₂/D₃ heterodimers is of particular interest since D₂ and D₃ receptors share a high degree of sequence homology and show similar ligand binding profiles and coupling patterns to cellular signals. Nonetheless, D₃ receptors couple less "robustly" to G-proteins than D2 receptors and several selective antagonists differentiating D₃ and D₂ receptors have been described. We will present evidences that heterodimerization between dopamine D₂ and D₃ receptors changes substantially the pharmacology of dopaminergic drugs.