

HYDROGEN PEROXIDE-DEPENDENT ERK1/2 DEPHOSPHORYLATION MEDIATES TOXICITY VIA UPSTREAM INHIBITION OF THE SURVIVAL SIGNALLING IN U937 CELLS EXPOSED TO PEROXYNITRITE

Cerioni Liana and Cantoni Orazio

Institute of Pharmacology and Pharmacognosy, University of Urbino "Carlo Bo"

Sequential activation of cytosolic phospholipase A_2 (cPLA₂) and 5-lipoxygenase (5-LO), critically regulated by extracellular signal-regulated kinase 1 and 2 (ERK1/2)-dependent phosphorylation, mediates survival to peroxynitrite in cells belonging to the monocyte/macrophage lineage. In contrast, a limiting factor for survival is represented by the parallel mitochondrial formation of H_2O_2 leading to suppression of the survival signalling. We herein extend our previous findings by showing that the inhibitory effects of H_2O_2 are upstream to ERK1/2 phosphorylation. This leads to inhibition of cPLA₂, 5-LO and downstream events preventing mitochondrial permeability transition (MPT) thereby causing a rapid MPT-dependent lethal response. Finally, we also report results consistent with the notion that the mechanism whereby H_2O_2 inhibits ERK1/2 phosphorylation involves activation of orthovanadate-sensitive phosphotyrosine protein phosphatase(s).