33° Congresso Nazionale della Società Italiana di Farmacologia Cagliari, 6-9 Giugno 2007

HERPES SIMPLEX VECTORS EXPRESSING FGF-2 AND BDNF PROMPT NEURONOGENESIS AND EXERT DISEASE-MODIFYING EFFECTS IN A MODEL OF TEMPORAL LOBE EPILEPSY

Mazzuferi Manuela, ¹ Paradiso Beatrice, ¹ Marconi Peggy, ¹ Zucchini Silvia, ¹ Elena Berto, ¹ Binaschi Anna, ¹ Bozac Aleksandra, ¹ Buzzi Andrea, ¹ Magri Eros, ¹ Navarro Mora Graciela, ² Rodi Donata, ¹ Volpi Ilaria, ¹ Fabene Paolo F., ² Marzola Andrea, ¹ Manservigi Roberto, ¹ Simonato Michele ¹

Neurotrophic factors (NTF) are involved in the survival, proliferation and differentiation of neurons from their precursors. Therefore, modulating NTF levels in lesion areas may represent a new approach for the therapy of seizure-induced damage. It is reported here that recombinant herpesvirus-based vectors expressing a combination of two NTFs, FGF-2 and BDNF, increases survival and proliferation of neural progenitors and favors their differentiation into neurons *in vitro*. These vectors were also tested *in vivo*, in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in the hippocampus 3 days after status epilepticus, FGF-2/BDNF expressing vectors partially repaired neuronal damage and prevented the occurrence of spontaneous seizures. Thus, supplementation of FGF-2 and BDNF promotes neuronogenesis and repair of existing neuronal damage, modifying the disease course in a model of epilepsy associated with hippocampal damage. Notably, these findings were obtained under conditions that reproduce those that may allow therapeutic intervention in patients.

¹University of Ferrara, ²University of Verona, Italy