

ACTIVATION OF NOCICEPTIN/ORPHANIN FQ AND CLASSICAL OPIOID RECEPTORS IN CHO CELLS EXPRESSING THE CHIMERIC GALPHAqi5 PROTEIN PROMOTES CALCIUM MOBILIZATION

<u>Camarda Valeria¹</u>, Molinari Paola², Ambrosio Caterina², Kostenis Evi³, Regoli Domenico¹, Guerrini Remo⁴, Severo Salvadori⁴, and Calo' Girolamo¹.

¹Dept Exp and Clin Medicine, Section of Pharmacology, University of Ferrara, Italy; ²Dept of Pharmacology, ISS, Rome, Italy; ^{3:} Inst for Pharmaceutical Biology, Bonn, Germany; ^{4:} Dept of Pharmaceutical Sciences, University of Ferrara, Italy

G-protein coupled receptors (GPCR) are among the most promising targets for drug discovery. Nowadays, novel GPCR ligands are mainly identified using high-throughput screening techniques based on recombinant receptors and calcium measurement with fluorometric assays (i.e. FlipR). To extend this approach to G_i coupled GPCR several strategies have been evaluated including the use of chimeric G proteins. The G α_{qi5} protein was used here to force nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as well as classical opioid receptors (the DOP, MOP and KOP) to signal via the PLC-IP₃-Ca²⁺ pathway in CHO cells. [Ca²⁺]_i levels were monitored using the fluorometric imaging plate reader FlexStation II and the Ca²⁺ dye Fluo 4 AM. Concentration response curves to N/OFQ and standard ligands for classical opioid receptors. Results are summarized in the following table.

Table 1: Effects of N/OFQ, standard opioid ligands and ATP in CHO cells expressing $G\alpha_{qi5}$ and recombinant human receptors.

	DOP		MOP		КОР		NOP	
	<i>pEC</i> ₅₀	E_{max}	<i>pEC</i> ₅₀	E_{max}	<i>pEC</i> ₅₀	E_{max}	<i>pEC</i> ₅₀	E_{max}
Morphine	crc incomplete		6.61	130±17%	crc incomplete		inactive	
DPDPE	8.89	76±2 %	inactive		inactive		inactive	
Dermorphin	6.43	78±3 %	7.89	146±29%	inactive		inactive	
Dynorphin A	7.73	75±4 %	6.67	121±37%	8.95	222±16%	inactive	
N/OFQ	inactive		inactive		inactive		9.49	220±17%
ATP	5.80	176±17%	6.18	$270\pm42\%$	5.91	252±20%	5.83	253±21%

Data are mean \pm SEM of at least 5 separate experiments. E_{max} were expressed as % over the basal fluorescence levels.

These results are in line with those reported in the literature with standard assays (GTP γ S, cAMP assays) for G_i coupled receptors and demonstrated that signalling through G α_{qi5} does not produce major modifications of the pharmacological profile of the receptor under study. This notion should be however confirmed for each receptor in further studies employing a large panel of selective agonists, partial agonists and antagonists.