33° Congresso Nazionale della Società Italiana di Farmacologia

Cagliari, 6-9 Giugno 2007

"IN VIVO" ESTIMATE OF ANTIOXIDANT ENZYMES AND LIPID PEROXIDATION AT DIFFERENT LEVELS OF HUMAN STRATUM CORNEUM

Giardina Silvana, Marzani Barbara, Marzatico Fulvio

Department of Physiological and Pharmacological Cellular and Molecular Sciences; Section of Pharmacology and Pharmacological Biotechnologies; Pavia University (Italy)

The skin is an high metabolic refill tissue, constantly exposed to ROS sources as UV light, ozone and air pollution.

By using a non-invasive method like tape strippings (Corneofix®), we studied the effects of UV-A radiation acute dose (15 J/cm²) on superoxide dismutase (SOD) and catalase (CAT) activities and lipid peroxidation (LPO) at different levels (1st,5th,10th) of human stratum corneum (SC). Furthermore we valued the protective effects of vitamin E (RRR-α-tocopherol) administration (Sursum Abiogen Pharma, 400 UI/die for 3 days) on these enzymatic activities and its role against the photo-induced lipid damages.

SOD and CAT show an activity gradient across the SC, lower in the outer stratum and superior in the inner one.

After vitamin E administration the enzymes activities decrease in all the SC strata; after the second vitamin E dose the SOD and CAT activities are generally halved.

After UV-A irradiation, CAT activity decreases within SC strata. The activity decrease is more evident in the 10th stratum, where it is also time-dependent (until 4 hours after irradiation).

SOD activity doesn't seem to be affected by photo-induced stress in the inner strata, while it's very low in the 1st stratum after UV-A irradiation.

The effects of UV-A irradiation arrange with the effects of vitamin E supplementation. The result is a large decrease of enzymes activities in all SC strata; 4 hours after UV-A exposure, a partial recovery of CAT activity is in evidence in the 10th stratum, while no recovery is evident for SOD activity.

The decrease of the enzymes activities are probably due to a strong control of antioxidant systems by cells, that down-regulate the enzymatic defences for exploiting the non enzymatic ones, when these are in large bioavailability. Offering an important antioxidant cover, vitamin E supplementation leads the antioxidant enzymes to "stand-by", as a strategy adopted by cells to save resources and energy.

Vitamin E administration in the normal skin shows strongly reduced LPO in SC, while the LPO undergo a progressive increase after UV-A exposure, particularly in the outer strata. The vitamin E supplementation before UV-A exposure shows LPO levels that are more contained than LPO levels after the only irradiation. Vitamin E has, at last, an extremely protective role against the UV-A mediated lipid damage.

So, it is possible to contend that strategies of nutritional and/or dermocosmetic supplementations, as RRR- α -tocopherol, are a valuable new approach for preventing and containing the skin UV-A mediated damages.

