

HYDROGEN SULPHIDE INVOLVEMENT IN VASCULAR TONE IN DIABETIC RATS

d'Emmanuele di Villa Bianca Roberta, Sorrentino R., Mitidieri E. and Sorrentino R.

Department of Experimental Pharmacology, University of Naples Federico II

Recently, in the scenery of mediators involved in the regulation of vascular tone, prominently a novel gastrasmitter is coming up, the hydrogen sulphide (H_2S). H_2S is produced endogenously from L-cysteine by cysthationine β -synthase (CBS) and cysthationine- γ -lyase (CSE). Intravenous bolus of H₂S caused a transient but significant decrease in arterial blood pressure in the rat, effect antagonized by glibenclamide, an ATP-dependent potassium channels (K_{ATP}) inhibitor [1]. In the same manner, in a *in vitro* study, H₂S induced a dosedependent relaxation by acting on K_{ATP} channels in the rat aorta [1]. The same results were observed in the mesenteric artery bed but in this case the H₂S-mediated vasodilation was also partially mediated by endothelium-derived hyperpolarazing factor (EDHF) [2]. H₂S seems to be implicated in diabetes, in fact it has been demonstrated that H₂S formation is increased in liver and pancreas in diabetic rats [3]. We investigated the biosynthesis of H₂S in. mesenteric bed and aorta, comparing the physiological status to a streptozotocin (STZ)-induced diabetes in rats. Hence, we evaluated the vascular response to H₂S by using sodium-hydrogen sulphide (NaHS, stable donor of H₂S) in both tissue and its implication with EDHF in diabetic rats. Here, we reported that in diabetic rats H₂S production was reduced in diabetic rats in both vascular district. In mesenteric bed NaHS-induced relaxation was similar in both groups. In contrast this effect, in Krebs medicated with indometacin plus L-NAME, condition that revealed the effect of EDHF, was higher in STZ than in CTR group. This data could indicate that H₂S may stimulate the release of EDHF in diabetic condition as protective effect. In aorta, NaHS effect was significantly higher in CTR rat suggesting a more susceptible K_{ATP} channels activation. In conclusion, H₂S may contrast the diabetic vascular hyperactivity either by EDHF release or by a major K_{ATP} channels activation; further understanding of the underlying mechanism for H₂S could open future prospective for clinical trials in diabetes.

[1] Zhao W, Zhang J, Lu Y and Wang R. The EMBO Journal (2001) 20: 6008-6016

[2] Cheng Y., Ndisang J.F., Tang G., Cao K., Wang R.(2004) Am. J. Physiol. Heart Circ. Physiol. 287: H2316-2323.

[3] Yusuf M., Kwong Huat B.T., Hsu A, Whiteman M., Bhatia M., Moore P.K. (2005) Biochem. Biophys. Res. Commun. 333:1146-1152.