33° Congresso Nazionale della Società Italiana di Farmacologia Cagliari, 6-9 Giugno 2007

INVOLVEMENT OF MITOGEN-ACTIVATED PROTEIN KINASES (MAPKS) DURING TESTICULAR ISCHEMIA-REPERFUSION INJURY IN NUCLEAR FACTOR-KB KNOCK-OUT MICE

Minutoli Letteria¹, Bitto Alessandra¹, Polito Francesca¹, Fiumara Tiziana¹, Squadrito Francesco¹, Mioni Chiara², Antonuccio Pietro³, Romeo Carmelo³, Marini Herbert⁴, Guarini Salvatore ²Caputi Achille P.¹ and Altavilla Domenica¹.

¹Department of Clinical and Experimental Medicine and Pharmacology, Univ of Messina ²Dept of of Biomed Sci, Univ of Modena and Reggio Emilia, ³Department of Med and Surg Pediatric Sci, ⁴Dept of Biochem, Physiol and Nutr Sci, University of Messina, Italy.

We investigated the patterns of ERK 1/2 and JNK activation in NF-κB knockout (KO) mice subjected to testicular torsion.

KO and normal littermate wild-type (WT) animals were subjected to testicular ischemia followed by 24 h reperfusion (TI/R). Sham testicular ischemia-reperfusion mice served as controls. ERK 1/2 and JNK expression by western blot analysis, Tumour Necrosis Factor- α (TNF- α) expression (RT-PCR and western blot) and a complete histological examination were carried out.

TI/R caused a greater increase in phosphorylated form of ERK 1/2 in KO mice (25 \pm 3 integrated intensity; 18 \pm 3 integrated intensity; respectively) than in WT animals (15 \pm 2 integrated intensity; 10 \pm 1 integrated intensity; respectively) in either the ischemic testis and the contralateral one. By contrary, active form of JNK was completely abrogated in both testes of KO mice (0.1 \pm 0.02 integrated intensity; 0.3 \pm 0.01integrated intensity; respectively), while WT animals showed a significant activation of this kinase in both testes (10 \pm 2 integrated intensity; 8 \pm 1 integrated intensity; respectively). TNF- α expression was markedly reduced in KO mice (3 \pm 0.6 n-folds/ β -actin; 5 \pm 1 integrated intensity;) when compared to WT mice (14 \pm 2 n-folds/ β -actin; 18 \pm 3 integrated intensity) either at the mRNA and the protein level. Finally TI/R-induced histological damage was markedly reduced in KO mice. Our data indicate that NF- κ B plays a pivotal role in the development of testicular ischemia-reperfusion injury and suggest that, in the absence of the transcriptional factor, the up-stream signal JNK may be abrogated while ERK 1/2 activity is over-expressed.