IL MONOSSIDO DI AZOTO MODULA IL CONSUMO DI OSSIGENO IN CELLULE MUSCOLARI CARDIACHE

B. Zanella, N. Calonghi, E. Pagnotta, L. Masotti, E. Giordano, M. Zini, C. Guarnieri

Dipartimento di Biochimica "G. Moruzzi", Università degli Studi di Bologna, via Irnerio 48, 40126 Bologna

L'ossido nitrico (NO) può produrre una vasta gamma di effetti biologici tra i quali l'inibizione, attraverso diversi meccanismi, della catena di trasporto elettronico mitocondriale [1-3]. Recenti studi hanno inoltre dimostrato che l'inibizione della respirazione mitocondriale prodotta dall'NO possa regolare il consumo tissutale di ossigeno [4].

Questo aspetto è stato approfondito nel nostro laboratorio utilizzando colture di cardiomioblasti ventricolari H9c2 di ratto, che esprimono le tre isoforme della sintasi dell'ossido nitrico (NOS) e mostrano un'attività NOS che viene stimolata dall'acetilcolina (Ach) e inibita da N^G -monomethyl-L-arginina (L-NMMA). Nostri dati preliminari evidenziano inoltre la presenza di un'isoforma inducibile della NOS (iNOS; NOS2) in mitocondri estratti dalle H9c2.

Utilizzando le sonde fluorescenti diaminofluoresceina diacetato (DAF2-DA), specifica per NO', e Mito-Tracker Red CM-H₂Xros, specifico per i mitocondri, abbiamo potuto verificare una sensibile colocalizzazione cellulare dei due segnali [5]. In altri termini, in condizioni di controllo esiste una significativa presenza di NO' nei mitocondri dei cardiomioblasti utilizzati come modello. La stimolazione con Ach, che aumenta del 75 % la formazione cellulare di NO', è parallelamente accompagnata da un aumento della sua localizzazione mitocondriale. Per studiare il ruolo dell'NO' nella respirazione mitocondriale il consumo di O₂ (QO₂) è stato misurato nelle cellule H9c2 in diverse condizioni sperimentali. Il QO₂ basale è risultato inibito nelle cellule stimolate con Ach, mentre la preincubazione con L-NMMA ne ha prodotto un aumento. E' possibile quindi concludere che il sistema NO'/NOS a livello mitocondriale può esercitare un importante ruolo di modulazione dell'attività respiratoria in cellule muscolari cardiache. Questo aspetto ha senz'altro rilevanza significativa per la fisiopatologia cardiaca e apre interessanti prospettive farmacologiche e terapeutiche.

Ringraziamenti

Si ringrazia il Sig. Massimo Sgarbi per il suo eccellente supporto tecnico. Le ricerche sono state finanziate con fondi M.I.U.R., Roma e Progetto Pluriennale di Ricerca EF1998, Università di Bologna.

Bibliografia

- 1. Brown G. C. (2000) Acta Physiol Scand 168, 667-674.
- 2. Cooper C. E. (2002) Trends in Biochem Sciences 27, 33-39.
- 3. Brown G. C. (1999) Biochim Biophys Acta 5, 351-369.
- 4. Loke K.E., et al.(1999) Circ Res 84, 840-845.
- 5. Zanella B., et al. (2002) *Biochem Biophys Res Commun* 290, 1010-1014.