THE HUMAN IMMUNODEFICIENCY VIRUS-1 PROTEIN (TAT) MODULATES NMDA RECEPTOR FUNCTION BY ACTING AT COLOCALIZED METABOTROPIC GLUTAMATE RECEPTOR 1

Veronica Musante,
Elisa Neri,
Paolo Severi,
Maurizio Raiteri,
and Anna Pittaluga

DI.ME.S, Pharmacology and Toxicology Section, Department of Experimental Medicine,
University of Genova, Italy,
Dision of Neurosurgery, Galliera Hospital, Genova, Italy,
Center of Excellence for Biomedical Research, University of Genova, Italy

We investigated the effects of the human immunodeficiency virus-1 transactivator of transcription (Tat) on the release of noradrenaline (NA) from human and rat brain synaptosomes. Tat could not evoke directly release of [3H]NA. In the presence of Tat (1 nM), N-methyl-D-aspartate (NMDA) concentrations unable to release (human synaptosomes) or slightly releasing (rat synaptosomes) [3H]NA became very effective. The NMDA/Tat-evoked release depends on NMDA receptors (NMDARs) since it was abolished by MK-801 (dizocilpine). Tat binding at NMDARs was excluded. The NMDA-induced release of [3H]NA in the presence of glycine was further potentiated by Tat. The release evoked by NMDA/glycine/Tat depends on metabotropic glutamate receptor 1 (mGluR1) activation, since it was halved by mGluR1 antagonists. Tat seems to act at the glutamate recognition site of mGluR1. Recently, Tat was shown to release [3H]acetylcholine from human cholinergic terminals; here, we demonstrate that this effect is also mediated by presynaptic mGluR1. The peptide sequence Tat41-60, but not Tat61-80, mimicked Tat. Phospholipase C, protein kinase C, and cytosolic tyrosine kinase are involved in the NMDA/glycine/Tat-evoked [3H]NA release. To conclude, Tat can represent a potent pathological agonist at mGlu1 receptors able to release acetylcholine from human cholinergic terminals and up-regulate NMDARs mediating NA release from human and rat noradrenergic terminals.

Granted by MIUR and by ISS (Programma di ricerca nazionale sull’AIDS)