A COMPARISON OF EXENATIDE AND INSULIN GLARGINE IN PATIENTS USING A SINGLE ORAL ANTIDIABETIC AGENT

Barnett Anthony H. 1, Trautmann Michael 2, Burger Jude 3, Johns Don 3, Kim Dennis 4, Brodows Robert 3, Gentilella Raffaella 5, Festa Andreas 2, Roberts Anthony 2
1 Department of Diabetes/Endocrinology, Birmingham Heartlands Hospital, United Kingdom, 2 Eli Lilly and Company, Hamburg, Germany, 3 Eli Lilly and Company, Indianapolis, United States, 4 Amylin Pharmaceuticals, Inc., San Diego, United States; 5 Eli Lilly Italy, Florence, Italy

Insulin glargine (G) is a common treatment for type 2 diabetes patients (pts) when oral medications no longer provide adequate glycaemic control. Exenatide (E) is an incretin mimetic for the treatment of type 2 diabetes inadequately controlled with metformin (MET) and/or a sulfonylurea (SFU).

This randomised, two-period, open-label, crossover study compared effects between E (5µg BID for 4 wks, then 10µg BID for 12 weeks) and insulin glargine (QD titrated to fasting blood glucose ≤5.6mM). Either treatment was added to ongoing single oral agent therapy (MET 56%; or SFU 44%) during two, 16-wk treatment periods. Pts (mean±SD) (age,54±9 y; weight,86±16.4kg; HbA1c,8.9±1.1%; fasting glucose,12.09±.31mM) continued their oral agent at maximal dose. Similar reductions in HbA1c from baseline (n=114, completers) were observed during treatment periods with E (-1.43±0.09%) and glargine (-1.41±0.09%). A similar percentage of pts achieved HbA1c≤7% with E (40%) and glargine treatment (41%). HbA1c ≤6.5% was achieved by 24% of E-treated pts compared with 14% of G-treated pts (P=.056). Both treatments maintained lowered HbA1c from the first treatment period through the second treatment period. Weight reduction during the first treatment period of E (-2.35kg) was reversed by G (+2.3kg,n=55), and weight gain during the first treatment period by G (+0.75kg) was followed by weight reduction on E (-2.3kg,n=59). Overall weight change from baseline was significantly different (P<0.001) between E (-1.95kg) and G treatments (+0.35kg). Both treatments significantly decreased fasting glucose from baseline (E, -3.04±0.23mM;G, -4.17±0 .23 mM; P<0.0001, within- and between-treatment groups). E injections prior to the morning and evening meals significantly decreased 2-hr post-meal glucose excursions (both P<.001) compared with G injections. Combined 2hr glucose excursions after all 3 meals were also significantly lower in E-treated pts compared with G-treated pts (P=.036). Overall efficacy results were similar between the MET- and SFU-treated subgroups, except for greater weight reduction in pts treated with E and MET (-2.97±4.28kg) compared with pts treated with E and SFU(-0.61±2.86kg).Hypoglycemia occurred in a greater percentage of pts treated with SFU (30% E,35% G) compared with pts treated with MET (3% E,17% G; between groups, P=.01). The most common adverse events potentially related to study drug were nausea (33%) and headache (8.7%) during E and G treatments, respectively.

In pts receiving ongoing treatment with MET or an SFU, while both E and insulin G improved HbA1c and significantly decreased fasting glucose, only E significantly reduced body weight and combined 2 hour post-meal glucose excursions.