SAFETY AND EFFICACY OF EXENATIDE OVER 16 WEEKS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS USING A THIAZOLIDINEDIONE WITH OR WITHOUT METFORMIN

Zinman Bernard 1, Hoogwerf Byron 2, Duran Garcia Santiago 3, Milton Denai 4, Giaconia Joseph 4, Kim Dennis 5, Gentilella Raffaella 6, Trautmann Michael 7, Brodows Robert 4

1 Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada, 2 Department of Endocrinology, Cleveland Clinic Foundation, Cleveland, USA, 3 Cátedra de Endocrinología, Hospital de Valme, Sevilla, Spain, 4 Eli Lilly and Company, Indianapolis, USA, 5 Amylin Pharmaceuticals, Inc., San Diego, USA, 6 Eli Lilly Italy, Florence, Italy, 7 Eli Lilly and Company, Hamburg, Germany

Exenatide, an incretin mimetic for the treatment of type 2 diabetes mellitus (T2DM), mimics several glucose-lowering actions of GLP-1 including glucose-mediated insulin secretion. Adjunctive therapy of exenatide and a TZD with or without metformin may reduce glucose levels by targeting the central defects of T2DM: beta cell dysfunction and insulin resistance.

This study was a randomised, placebo-controlled, parallel, double-blind trial in 233 patients with elevated HbA1c (range: 7.1-10.0%) in spite of therapy with a TZD alone (20%) or a TZD with metformin (80%). Patients (129M, 56±10y, BMI 34±5kg/m², HbA1c 7.9±0.9% [mean±SD]) received subcutaneous injections of placebo or exenatide BID for 16 weeks. Patients that received exenatide received 5 μg BID for 4 weeks followed by 10 μg BID for 12 weeks. Endpoint measures included HbA1c, fasting serum glucose (FSG), body weight, 7-point self-monitored blood glucose (SMBG), safety, and tolerability.

For exenatide, 71% of patients completed the study versus 86% for placebo. Exenatide decreased mean HbA1c by -0.8±0.9% from baseline (treatment effect, -0.9%, p<0.0001). With exenatide, 62% of patients achieved HbA1c ≤7% versus 16% with placebo (p<0.0001); 29% achieved HbA1c≤6.5% with exenatide versus 8% with placebo (p=0.0002). Mean FSG for patients who received exenatide was -1.5mmol/L lower than placebo (p<0.0001). Exenatide reduced mean body weight from baseline versus placebo (-1.5±3.1 kg vs. -0.2±2.5 kg, respectively, p<0.001). Mean daily 2-h SMBG postprandial excursions for exenatide were lower than baseline (-1.4±1.4mmol/L, p<0.0001) with greatest differences after breakfast (-1.9±2.9mmol/L, p<0.0001) and dinner (-1.9±2.5 mmol/L, p<0.0001). Placebo-treated patients showed no significant reductions in postprandial glucose excursions from baseline at any meal but demonstrated a reduction in the daily mean glucose concentration (p=0.0408). Exenatide reduced the proinsulin/insulin ratio over placebo (p=0.0337) and increased HOMA-B versus placebo (p=0.0032). No statistically significant difference in HOMA-S existed between groups. The most frequent adverse event was nausea (40% exenatide vs. 15% placebo); there was no significant difference in incidence of hypoglycaemia.

These findings support the potential use of exenatide as adjunctive therapy for patients with T2DM who inadequately control glucose levels with a TZD alone or in combination with metformin.